Scintillator Market Size, Share, Opportunities, COVID-19 Impact, And Trends By Material Type (Organic, Inorganic), By Product (Pocket-Size Instruments, Hand-Held Instruments, Fixed Or Installed Systems), By End-User Industry (Healthcare, Energy And Power, Manufacturing, Defense, Others), And By Geography - Forecasts From 2023 To 2028
- Published : Aug 2023
- Report Code : KSI061610187
- Pages : 125
The scintillator market is predicted to grow at a CAGR of 4.82% from US$700.597 million in 2021 to US$974.076 million by 2028.
Scintillators enable researchers to find numerous radiation and particles. The photomultipliers and photodiodes are simultaneously detected using the particles in a later step. When a particle strikes a scintillator, the scintillator emits luminesce by absorbing the energy of the particle. Scintillators, which typically consist of water-clear crystalline materials, are more likely to perform better if they contain heavy elements. This is since it enables the scintillators to absorb gamma radiation from the substance. The scintillators' capacity to conduct many labeling experiments at once is what is driving their wider use.
Further, expanding focus on technological improvements by the major producers, rising the number of nuclear power plants in Asian countries, and the expanding use of scintillators for a broad range of end-use applications are leading to the market growth of scintillators.
Moreover, the increasing use of scintillators in medical scanning and other radiological applications in medicine, as well as the rising prevalence of heart and neurological illnesses, will boost the scintillator market value. The cost of conducting research and development will rise, which will pave the way for the market for scintillators to expand.
Increasing technological advancements to boost market growth.
Growing technical advancement and novel technologies for a variety of uses is driving the market. Various organizations are researching this technology such as The Domestic Nuclear Detection Office of the Department of Homeland Security, which is trying to explore new technologies for Spectroscopic Personal Radiation Detectors. The study attempts to locate and recognize nuclear or radioactive sources as well as develop better detection systems. The technologies created through this effort could be combined with brand-new handheld gadgets and used in regular activities. It is putting a lot of effort into enhancing nuclear and radiological detection capabilities, which is essential to improving the DHS's capacity to recognize and contain nuclear threats.
The passive fast-moving neutron detection solution, which in turn increases the detection of shielded unique nuclear material across various active detection methods, is a possible indicator of the presence of certain nuclear materials, notably weapons-grade plutonium. Further, the enticing characteristics of scintillators, such as high precision, effectiveness, and the capacity to detect even lower radiation levels, are drawing numerous advancements in a variety of industries.
Additionally, the expanding practice of using scintillating materials in PET scanners is expected to significantly contribute to the development of medical imaging techniques which has increased the revenue for medical devices in major countries. For instance, as per the 2020 report of International Trade Administration, the revenue of medical devices in America increased from US$198 billion in 2019 to US$209 billion in 2020.
Application in the medical industry to boost the demand for the scintillators market.
Scintillators are used in the production of a wide variety of medical imaging devices such as planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT and PET scan. Scintillators and scintillating materials are used in imaging devices as they provide relevant information regarding the exact position, emission time and time of conversion of each gamma and X ray which help in taking precise images. Therefore, growing demand for diagnostic images because of rising prevalence of chronic disease such as tumors or injuries is driving the growth of this segment. According to a recent NHS report, in England, 44.0 million imaging tests were recorded in 2022, up from 34.9 million the previous year, representing a 26 per cent rise. Plain radiography or X-ray was the most common, accounting for 21.8 million treatments, an increase of 30 per cent from previous year followed by Diagnostic Ultrasonography with 10.1 million scans, an increase of 23 per cent), Computerized Axial Tomography recorded 6.7 million scans, representing an increase of 21 per cent, and Magnetic Resonance Imaging (MRI, 3.8 million, an increase of 28%).
Scintillators are used in the production of a wide variety of medical imaging devices such as planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT and PET scan. Scintillators and scintillating materials are used in imaging devices as they provide relevant information regarding the exact position, emission time and time of conversion of each gamma and X ray which help in taking precise images. Therefore, growing demand for diagnostic images because of rising prevalence of chronic disease such as tumors or injuries is driving the growth of this segment. According to a recent NHS report, in England, 44.0 million imaging tests were recorded in 2022, up from 34.9 million the previous year, representing a 26 per cent rise. Plain radiography or X-ray was the most common, accounting for 21.8 million treatments, an increase of 30 per cent from previous year followed by Diagnostic Ultrasonography with 10.1 million scans, an increase of 23 per cent), Computerized Axial Tomography recorded 6.7 million scans, representing an increase of 21 per cent, and Magnetic Resonance Imaging (MRI, 3.8 million, an increase of 28%).
Rising prevalence of chronic disease and pandemic like situations have led to increased research and trails to develop latest diagnostic medical devices, driving the growth of scintillators in the healthcare sector. For instance, in May 2023, a group of Florida State University scientists has developed a new generation of organic-inorganic hybrid materials that potentially improve picture quality in CT scans, X-Ray machines, and other radiation detection and imaging technologies. Professor Biwu Ma of the Department of Chemistry and Biochemistry and his colleagues developed these novel materials, which may be used as scintillators. When exposed to X-Rays and other high-energy radiations, these materials emit light.
Key Developments
- In August 2020, researchers from Florida State University created eco-friendly X-ray Scintillators with High Efficiency that are less expensive and environmentally hazardous than current technology.
- in November 2022, Canon Medical Systems Corporation (Canon Medical), a subsidiary of Canon Inc., has created the first photon-counting CT system using scintillators in the United States that incorporates Redlen's sophisticated technology. This system was deployed at Japan's National Cancer Centre Exploratory Oncology Research & Clinical Trial Centre, where it is now employed for research into the clinical uses of PCCT.
Scintillator Market Scope:
Report Metric | Details |
Market Size Value in 2021 | US$700.597 million |
Market Size Value in 2028 | US$974.076 million |
Growth Rate | CAGR of 4.82% from 2021 to 2028 |
Base Year | 2021 |
Forecast Period | 2023 – 2028 |
Forecast Unit (Value) | USD Million |
Segments Covered | Material Type, Product, End-User Industry, and Geography |
Regions Covered | North America, South America, Europe, Middle East and Africa, Asia Pacific |
Companies Covered | Applied Scintillation Technologies Ltd., Argus Imaging Bv Inc., Hamamatsu Photonics K.K., Radiation Monitoring Devices Inc, Hitachi Metal Ltd., Mirion Technologies, Siemens, Zecotek Photonics Inc, Ludlum Measurements, Amcrys, Saint Gobain, Zecotek Photonics Inc. |
Customization Scope | Free report customization with purchase |
Segmentation:
- By Material Type
- Organic
- Inorganic
- By Product
- Pocket-Size Instruments
- Hand-Held Instruments
- Fixed or Installed Systems
- By End-User Industry
- Healthcare
- Energy and Power
- Manufacturing
- Defense
- Others
- By Geography
- North America
- USA
- Canada
- Others
- South America
- Brazil
- Others
- Europe
- UK
- Germany
- France
- Others
- Middle East and Africa
- Saudi Arabia
- Israel
- Others
- Asia Pacific
- China
- Japan
- South Korea
- India
- Indonesia
- Taiwan
- Others
- North America
Frequently Asked Questions (FAQs)
1. INTRODUCTION
1.1. Market Overview
1.2. Market Definition
1.3. Scope of the Study
1.4. Market Segmentation
1.5. Currency
1.6. Assumptions
1.7. Base, and Forecast Years Timeline
2. RESEARCH METHODOLOGY
2.1. Research Data
2.2. Assumptions
3. EXECUTIVE SUMMARY
3.1. Research Highlights
4. MARKET DYNAMICS
4.1. Market Drivers
4.2. Market Restraints
4.3. Porter’s Five Force Analysis
4.3.1. Bargaining Power of Suppliers
4.3.2. Bargaining Power of Buyers
4.3.3. Threat of New Entrants
4.3.4. Threat of Substitutes
4.3.5. Competitive Rivalry in the Industry
4.4. Industry Value Chain Analysis
5. SCINTILLATOR MARKET ANALYSIS BY MATERIAL TYPE
5.1. Introduction
5.2. Organic
5.3. Inorganic
6. SCINTILLATOR MARKET ANALYSIS BY PRODUCT
6.1. Introduction
6.2. Pocket-Size Instruments
6.3. Hand-Held Instruments
6.4. Fixed or Installed Systems
7. SCINTILLATOR MARKET ANALYSIS BY END-USER INDUSTRY
7.1. Introduction
7.2. Healthcare
7.3. Energy and Power
7.4. Manufacturing
7.5. Defense
7.6. Others
8. SCINTILLATOR MARKET ANALYSIS BY GEOGRAPHY
8.1. Introduction
8.2. North America
8.2.1. United States
8.2.2. Canada
8.2.3. Mexico
8.3. South America
8.3.1. Brazil
8.3.2. Others
8.4. Europe
8.4.1. UK
8.4.2. Germany
8.4.3. France
8.4.4. Others
8.5. Middle East and Africa
8.5.1. Saudi Arabia
8.5.2. Israel
8.5.3. Others
8.6. Asia Pacific
8.6.1. Japan
8.6.2. China
8.6.3. South Korea
8.6.4. India
8.6.5. Indonesia
8.6.6. Taiwan
8.6.7. Others
9. COMPETITIVE ENVIRONMENT AND ANALYSIS
9.1. Major Players and Strategy Analysis
9.2. Emerging Players and Market Lucrativeness
9.3. Mergers, Acquisitions, Agreements, and Collaborations
9.4. Vendor Competitiveness Matrix
10. COMPANY PROFILES
10.1. Applied Scintillation Technologies Ltd.
10.2. Argus Imaging Bv Inc.
10.3. Hamamatsu Photonics K.K.
10.4. Radiation Monitoring Devices Inc
10.5. Hitachi Metal Ltd.
10.6. Mirion Technologies
10.7. Siemens
10.8. Zecotek Photonics Inc
10.9. Ludlum Measurements
10.10. Amcrys
10.11. Saint Gobain
10.12. Zecotek Photonics Inc.
Applied Scintillation Technologies Ltd.
Argus Imaging Bv Inc.
Hamamatsu Photonics K.K.
Radiation Monitoring Devices Inc
Hitachi Metal Ltd.
Mirion Technologies
Siemens
Zecotek Photonics Inc
Ludlum Measurements
Amcrys
Saint Gobain
Zecotek Photonics Inc.
Related Reports
Report Name | Published Month | Get Sample PDF |
---|---|---|
Wearable Devices Market Insights: Size, Share, Forecast 2029 | Jun 2024 | |
Photonic Sensor Market Size & Share: Industry Report, 2022-2027 | Feb 2022 | |
Photonic Integrated Circuit (PIC) Market Size: Report, 2023 - 2028 | Feb 2023 | |
Reflective Photoelectric Sensor Market Size: Report, 2023 - 2028 | Mar 2021 | |
Photoelectric Sensor Market Size & Share: Report, 2024 - 2029 | Feb 2024 |